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1 Introduction

In this article we study the behaviour of the electromagnetic field in a material presenting hetero-
geneous microstructures (composite materials) which are described by spatially periodic param-
eters. We will subject such composite materials to electromagnetic fields generated by currents
of varying frequencies. When the period of the structure is small compared to the wavelength,
the coefficients in Maxwell’s equations oscillate rapidly. These oscillating coefficients are difficult
to treat numerically in simulations. Homogenization is a process in which the composite mate-
rial having a microscopic structure is replaced with an equivalent material having macroscopic,
homogeneous properties. In this process of homogenization the rapidly oscillating coefficients are
replaced with new effective constant coefficients. The primary objective of homogenization, i.e., of
the micro-macro approach, is to replace a system with periodically varying coefficients by a limiting
homogeneous system that facilitates computation. The approach that we take here is based on the
periodic unfolding method presented in [8, 9, 7]. We first mention other efforts on homogenization
of Maxwell’s equations.

In [25], a method based on spectral expansions for Maxwell’s equations is presented, which
utilizes eigenvectors of the curl operators combined with the microscopic description of the material.
The homogenized material is represented using mean values of only a few eigenvectors. This method
relies on the material being lossless, in which case Maxwell’s equations can be associated with a
self-adjoint partial differential operator. However, most materials usually have losses due to a
small conductivity or dispersive effects, which renders the corresponding operator in Maxwell’s
equations non-selfadjoint. In [24] the authors use a singular value decomposition for analyzing
non-selfadjoint operators that arise in Maxwell’s equations. They expand the electromagnetic field
in the modes corresponding to the singular values, and show that only the smallest singular values
make a significant contribution to the total field when the scale is small. Using this approach they
find effective, or homogenized, material parameters for Maxwell’s equations when the microscopic
scale becomes small compared to the scale induced by the frequencies of the imposed currents.
In [12], the authors compare two different homogenization methods for Maxwell’s equations in
two and three dimensions. The first method is the classical way of determining the homogenized
coefficients [9], which consists of solving an elliptic problem in a unit cell. The second method
based on spectral expansions is described in [25]. In [16], the author presents an overview of
the homogenization of anisotropic materials at fixed frequency using the concept of two-scaled
convergence [20, 1]. The homogenized electric and magnetic parameters, the relative permittivity
and the relative permeability, respectively, are found by suitable averages of the solution of a local
problem in the unit cell. In [13] a homogenization technique for harmonic Maxwell equations in
a composite periodic medium is presented. See also [26, 17, 21] for some other homogenization
methods for Maxwell’s equations.

In this paper we use the periodic unfolding method introduced in [8] in the abstract framework
of stationary elliptic equations. The study in this paper considers constitutive laws that take
into account bianisotropy, chiral symmetry, thermal and memory effects. The homogenization
procedure yields a limit constitutive law different from the original one wherein the convolution
operator that accounts for memory effects is replaced by a more complex Hilbert-Schmidt operator.
We refer the reader to [6, 5] for the relevant theory. In the following sections, we present the
electromagnetic problem that is of interest to us and then set up the corresponding homogenized
problem to be solved. A comparison is made between the effective parameters obtained by the
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exact homogenization method presented here and those computed by traditional mixture formulae,
such as the Maxwell Garnett formula, the Böttcher mixture rule or Bruggeman formula, some of
which are based on physical arguments [22].

Our efforts here are motivated by use of electromagnetic interrogating signals (possibly in the
Terahertz range) for detection of defects [4, 14] in the insulating foam on the fuel tanks of the
NASA space shuttles. Defects in the foam are believed to contribute to the problem of separation
of the foam during liftoff, resulting in significant damage to and possibly subsequent destruction of
the space vehicle itself. The low density, closed cell foam is a very complex heterogeneous material
[19]. It is a polyurethane-type foam composed of five primary substances: polymeric isocyanate, a
flame retardant, a surfactant, a blowing agent, and a catalyst. The surfactant controls the surface
tension of a liquid and thus cell formation. The blowing agent creates the foam’s cellular structure
by creating millions of tiny bubbles or foam cells. As a first approximation, we consider here
materials with periodic gas filled cells surrounded by a matrix of polyurethane type nonmagnetic
material. The dielectric properties (permittivity, conductivity, etc.) vary substantially between
the cellular and matrix materials, leading to highly oscillating coefficients in the Maxwell system
describing propagation, reflection and dispersion of the electromagnetic fields resulting from the
interrogating probes.

2 Maxwell’s Equations in a Continuous Medium

We employ Maxwell’s equations for a linear and isotropic medium in a form that includes terms
for the electric polarization given by




(i)
∂D

∂t
+ Jc −∇×H = Js in (0, T ) × Ω,

(ii)
∂B

∂t
+ ∇×E = 0 in (0, T ) × Ω,

(iii) ∇ · D = ρ in (0, T ) × Ω,

(iv) ∇ · B = 0 in (0, T ) × Ω,

(v) E × n = 0 on (0, T ) × ∂Ω,

(vi) E(0,x) = 0, H(0,x) = 0 in Ω.

(1)

The vector valued functions E and H represent the strengths of the electric and magnetic fields,
respectively, while D and B are the electric and magnetic flux densities, respectively. The conduc-
tion current density is denoted by Jc, while the source current density is given by Js. The scalar
ρ represents the density of free electric charges unaccounted for in the electric polarization. We
assume perfect conducting boundary conditions (1,v), on the boundary ∂Ω, with unit outward nor-
mal n. We also assume zero initial conditions for all the unknown fields. System (1) is completed
by constitutive laws that embody the behaviour of the material in response to the electromagnetic
fields. These are given in (0, T ) × Ω in the form




(i) D(t,x) = ε0εr(x)E(t,x) + P(t,x),

(ii) B(t,x) = µ0H(t,x).
(2)
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For the media that is of interest to us, we can neglect magnetic effects; we also assume that
Ohms’s law governs the electric conductivity, i.e.,

Jc(t,x) = σ(x)E(t,x) in (0, T ) × Ω. (3)

We will modify system (1) and the constitutive laws (2) by performing a change of variables that
renders the system in a form that is convenient for analysis and computation. From (1,i) we have

∂

∂t

(
D +

∫ t

0
Jc(s,x) ds

)
−∇×H = Js in (0, T ) × Ω. (4)

Then we define the new variable

D̃(t,x) = D(t,x) +

∫ t

0
Jc(s,x) ds. (5)

Using definition (5) in (4) and (1) we obtain the modified system




(i)
∂D̃

∂t
−∇×H = Js in (0, T ) × Ω,

(ii)
∂B

∂t
+ ∇×E = 0 in (0, T ) × Ω,

(iii) ∇ · D̃ = 0 in (0, T ) × Ω,

(iv) ∇ · B = 0 in (0, T ) × Ω,

(v) E × n = 0 on (0, T ) × ∂Ω,

(vi) E(0,x) = 0, H(0,x) = 0 in Ω.

(6)

We note that equation (6,iii) follows from the continuity equation ∂ρ
∂t +∇ · Jc = 0, the assumption

that ρ(0) = 0, and the assumption that ∇ · Js = 0 (in the sense of distributions). The modified
constitutive law (2,i) after substitution of (3) and (5) becomes

D̃(t,x) = ε0εr(x)E(t,x) +

∫ t

0
σ(x)E(s,x) ds + P(t,x). (7)

To describe the behaviour of the media’s macroscopic electric polarization P, we employ a
general integral representation model in which the polarization explicitly depends on the past
history of the electric field. This convolution model is sufficiently general to include microscopic
polarization mechanisms such as dipole or orientational polarization as well as ionic and electronic
polarization and other frequency dependent polarization mechanisms. The resulting constitutive
law can be given in terms of a polarization or displacement susceptibility kernel ν as

P(t,x) =

∫ t

0
ν(t − s,x)E(s,x) ds. (8)

Thus the modified constitutive laws are



(i) D(t,x) = ε0εr(x)E(t,x) +

∫ t

0
{σ(x) + ν(t − s,x)}E(s,x) ds,

(ii) B(t,x) = µ0H(t,x),

(9)
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where, in the above and henceforth we have dropped the ˜ symbol over D, at the same time keeping
in mind that D̃ in definition (5) is the modified electric flux density. Let us define the vector of
fields

u = (u1,u2)
T = (E,H)T ∈ W 1,1(0, T ; H1(Ω; R6)), (10)

and the operator

Lu(t,x) =

(
D(t,x)

B(t,x)

)
, (11)

which from (9) can be written as:

Lu(t,x) =

[
ε0εr(x)I3 03

03 µ0I3

](
E(t,x)

H(t,x)

)

+

∫ t

0

{[
σ(x)I3 03

03 03

]
+

[
ν(t − s,x)I3 03

03 03

]}(
E(s,x)

H(s,x)

)
ds.

(12)

We label the three 6 × 6 coefficient matrices in (12) as

A(x) =

[
ε0εr(x)I3 03

03 µ0I3

]
, (13a)

B(x) =

[
σ(x)I3 03

03 03

]
, (13b)

C(t,x) =

[
ν(t,x)I3 03

03 03

]
, (13c)

where, in the above definitions In is an n × n identity matrix and 0n is an n × n matrix of zeros,
n ∈ N. Using these definitions we may rewrite (12) as

Lu(t,x) = A(x)u(t,x) +

∫ t

0
B(x)u(s,x) ds +

∫ t

0
C(t − s,x)u(s,x) ds. (14)

Next, we define the Maxwell operator M as

Mu(t,x) = M

(
E(t,x)

H(t,x)

)
=

(
∇×H(t,x)

−∇×E(t,x)

)
(15)

and the vector Js as
Js(t) = −Js(t)e1 (16)

where, e1 = (1, 0, 0, 0, 0, 0)T ∈ R
6, is a unit basis vector. Thus Maxwell’s equation can be rewritten

in the form 


(i)
d

dt
Lu = Mu + Js(t) in (0, T ) × Ω,

(ii) u(0,x) = 0 in Ω,

(iii) u1(t,x) × n(x) = 0 on (0, T ) × ∂Ω,

(17)
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where L is the operator associated with the constitutive law (14), and M is the Maxwell operator
(15). Note that the exterior source term Js has only one non-zero component.

We assume that the structure that occupies the domain Ω entails periodic microstructures
leading to matrices A,B and C with spatially oscillatory coefficients. Specifically, we will assume
that εr, σ and ν are rapidly oscillating spatial functions.
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Figure 1: Periodic composite material presenting a circular microstructure with periodicity α. The
figure shows α decreasing from left to right.

3 The Homogenized Problem

The theory presented in this section is based on results from [6]. We denote by Y α the reference cell
of the periodic structure that occupies Ω (see Figure 1). The construction of the homogenized prob-
lem involves solving for the corrector subterms w̄A

k ∈ H1
per(Y ; R2), w̄k ∈ W 1,1(0, T ; H1

per(Y ; R2))
and w̄0

k ∈ W 2,1(0, T ; H1
per(Y ; R2)), solutions to the corrector equations




(i)

∫

Y
A(y)∇yw̄

A
k · ∇yv̄(y) dy = −

∫

Y
A(y)ek · ∇yv̄(y) dy,

(ii)

∫

Y

{
A(y)∇yw̄k(t,y) +

∫ t

0
{B(y) + C(t − s,y)}∇yw̄k(s,y) ds

}
· ∇yv̄(y)dy

= −
∫

Y
{B(y) + C(t,y)}

{
ek + ∇yw̄

A
k

}
· ∇yv̄(y) dy,

(iii)

∫

Y

{
A(y)∇yw̄

0
k(t,y) +

∫ t

0
{B(y) + C(t − s,y)}∇yw̄

0
k(s,y)ds

}
· ∇yv̄(y)dy

= −
∫

Y
A(y)ek · ∇yv̄(y) dy,

(18)

for all v̄ ∈ H1
per(Y ; R2) and k ∈ {1, . . . , 6}. Here, H1

per(Y ) denotes the space of periodic functions
with vanishing mean value. Note that if we decompose v̄ into c1v̄1 + c2v̄2 where v̄1 = [v1, 0] and
v̄2 = [0, v2], then each set of equations above decouple into an equation for w̄k,1 and one for w̄k,2.
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For example, equation (18,i) becomes



(ia)

∫

Y
A11(y)∇yw̄

A
k,1 · ∇yv̄1(y) dy = −

∫

Y
A11(y)ek,1 · ∇yv̄1(y) dy

(ib)

∫

Y
A22(y)∇yw̄

A
k,2 · ∇yv̄2(y) dy = −

∫

Y
A22(y)ek,2 · ∇yv̄2(y) dy.

(19)

where A11 denotes the first 3× 3 block of A and ek,1 = [1, 1, 1, 0, 0, 0]T , and similarly A22 denotes
the last 3 × 3 block of A with ek,2 = [0, 0, 0.1, 1, 1]T .

The first corrector term ū, from the two-scale expansion (see [6])

uα = u(x) + ∇yū(x,y) + . . . , x ∈ Ω,y ∈ Y, (20)

is given as

ū(t,x,y) = w̄A
k (y)uk(t,x) +

∫ t

0
w̄k(t − s,y)uk(s,x) ds + w̄0

k(t,y)u0
k(x). (21)

with ū ∈ W 2,1(0, T ; H1
per(Y ; R2)), where we have considered the decompositions u(t,x) = uk(t,x)ek

and u0(x) = u0
k(x)ek, k = 1, . . . 6. Rewriting (21) in matrix form we have

ū(t,x,y) = w̄A(y)u(t,x) +

∫ t

0
w̄(t − s,y)u(s,x) ds + w̄0(t,y)u0(x). (22)

where w̄A ∈ R
2×6 with columns {w̄A

k }6
k=1. Similarly w̄0, w̄ ∈ R

2×6. The expansion (20) can be
written as

Eα
x1

= Ex1
+ ∂y1

ū1(x,y) + . . . (23a)

Eα
x2

= Ex2
+ ∂y2

ū1(x,y) + . . . (23b)

Eα
x3

= Ex3
+ ∂y3

ū1(x,y) + . . . (23c)

Hα
x1

= Hx1
+ ∂y1

ū2(x,y) + . . . (23d)

Hα
x2

= Hx2
+ ∂y2

ū2(x,y) + . . . (23e)

Hα
x3

= Hx3
+ ∂y3

ū2(x,y) + . . . . (23f)

We now define a new operator

Lu(t,x) = Au(t,x) + B
∫ t

0
u(s,x) ds +

∫ t

0
C(t − s)u(s,x) ds, (24)

where the 6 × 6 matrices A,B and C are computed using the solutions of system (18) as follows



(i) Ak =

∫

Y
A(y)

{
ek + ∇yw̄

A
k (y)

}
dy,

(ii) Bk =

∫

Y
B(y)

{
ek + ∇yw̄

A
k (y)

}
dy,

(iii) Ck(t) =

∫

Y
C(t,y)

{
ek + ∇yw̄

A
k (y)

}
dy +

∫

Y
A(y)∇yw̄k(t,y) dy

+

∫

Y

∫ t

0
{B(y) + C(t − s,y)}∇yw̄k(s,y) ds dy,

(25)
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for k = 1, 2, . . . , 6, and where Ak,Bk, Ck are the kth columns of the homogenized matrices A,B,
and C, respectively. In the homogenized problem, the electromagnetic field u is the solution of the
system 



(i)
d

dt
Lu = Mu + Js in (0, T ) × Ω,

(ii) u(0,x) = 0 in Ω,

(iii) u1(t) × n = 0 on (0, T ) × ∂Ω,

(26)

where Js is as defined in (16), M is as defined in (15), and L is as defined in (24). We note that
if the initial conditions are nonzero, then there is a supplementary source term J 0 that should be
introduced in the right side of (26,i), which is given to be

J 0(t,x) = u0
k(x)

d

dt

{∫

Y

(
A∇yw̄

0
k(t) +

∫ t

0
(B + C(t − s))∇yw̄

0
k(s) ds

)}
, (27)

k = 1, . . . , 6. See [6] for details.

4 Reduction to Two Spatial Dimensions

We now assume our problem possesses uniformity in the spatial direction y (see Figure 2 for
a schematic of the computational domain). In this case Maxwell’s equations decouple into two
different modes, the transverse electric (TE) and transverse magnetic (TM) modes. Here, we are
interested in the TEy mode. The TEy mode involves the components Ex, Ez for the electric field
and the component Hy of the magnetic field. Let x,y ∈ R

3 with x = (x1, x2, x3) and y = (y1, y2, y3).
We will use x ∈ R

3 for points on the macro scale, and y ∈ R
3 for points on the micro scale (reference

cell). Since we assume uniformity in the x2-direction, we may take all derivatives with respect to
x2 (or y2) to be zero. Then equation (17,i) can be written in scalar form as




∂tDx1

∂tDx2

∂tDx3

∂tBx1

∂tBx2

∂tBx3




=




∂x3
Hx2

− Js

∂x3
Hx1

− ∂x1
Hx3

∂x1
Hx2

−∂x3
Ex2

−∂x3
Ex1

+ ∂x1
Ex3

−∂x1
Ex2




, (28)

with Lu = (D,B)T . Recall here that D is the modified electric flux density, where we have dropped
the ˜ notation. We may decouple system (28) into the TE mode,




∂tDx1

∂tBx2

∂tDx3


 =




∂x3
Hx2

− Js

−∂x3
Ex1

+ ∂x1
Ex3

∂x1
Hx2


 , (29)
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Figure 2: The computational domain with surrounding perfectly matched absorbing layers (PML).
The figure shows an antenna in the region [x̄1, x̄2] × zc, x̄1, x̄2 ∈ X0, and the composite material
displaying periodic circular microstructures in the region X0×ZD. The PML layers are terminated
by perfectly conducting boundary conditions (PEC walls).

and the TM mode 


∂tBx1

∂tDx2

∂tBx3


 =




−∂x3
Ex2

∂x3
Hx1

− ∂x1
Hx3

−∂x1
Ex2


 . (30)

We assume that our pulse is polarized to only have an x1-component. In this case the component
that is of interest in our problem is the Ex1

component.

5 Homogenization Model in Two Dimensions

In a similar manner to the three dimensional case, we may construct matrices ATE, BTE, and CTE

that represent the constitutive relations in two dimensions. Thus the constitutive matrices are

ATE =

[
ATE

11 0

0 µ0

]
; BTE =

[
BTE

11 0

0 0

]
; CTE =

[
CTE

11 0

0 0

]
; (31)

ATE
11 (x) =

[
ε0εr(x) 0

0 ε0εr(x)

]
; BTE

11 (x) =

[
σ(x) 0

0 σ(x)

]
; CTE

11 (t,x) =

[
ν(t,x) 0

0 ν(t,x)

]
. (32)

The homogenized solution for the TE mode is obtained from the formal asymptotic expansion
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(23) as

Eα
x1

= Ex1
+ ∂y1

ū1(x,y) + . . . (33a)

Eα
x3

= Ex3
+ ∂y3

ū1(x,y) + . . . (33b)

Hα
x2

= Hx2
+ ∂y2

ū2(x,y) + . . . . (33c)

Also, since we are assuming uniformity in the x2 direction, we set the term ∂y2
ū2(x,y) to zero. So

(33) becomes

Eα
x1

= Ex1
+ ∂y1

ū1(x,y) + . . . (34a)

Eα
x3

= Ex3
+ ∂y3

ū1(x,y) + . . . (34b)

Hα
x2

= Hx2
. (34c)

Hence the homogenized electric field for the TE mode is

Eα = E + ∇yū1(x,y) + . . . , (35)

where the gradient operator in this case is ∇y = (∂y1
, ∂y3

)T . Therefore we only need to solve for
ū1(x,y), which in turn only depends on the first component of w̄A

k , w̄0
k, and w̄k, for k = 1, 2; we

will refer to these as w̄A
k , w̄0

k, and w̄k, respectively.

Let us again denote by Y the reference cell of the periodic structure that occupies Ω ⊂ R
2.

The construction of the two-dimensional homogenized problem involves solving for the corrector

subterms w̄A
k ∈ H1

per(Y ; R), w̄k ∈ W 1,1(0, T ; H1
per(Y ; R)) and w̄0

k ∈ W 2,1(0, T ; H1
per(Y ; R)), solutions

to the corrector equations




(i)

∫

Y
ATE

11 (y)∇yw̄A
k · ∇yv̄(y) dy = −

∫

Y
ATE

11 (y)ek · ∇yv̄(y) dy,

(ii)

∫

Y
ATE

11 (y)∇yw̄k(t,y) · ∇yv̄(y)dy

+

∫

Y

∫ t

0

{
BTE

11 (y) + CTE
11 (t − s,y)

}
∇yw̄k(s,y) ds · ∇yv̄(y)dy

= −
∫

Y

{
BTE

11 (y) + CTE
11 (t,y)

}{
ek + ∇yw̄A

k

}
· ∇yv̄(y) dy,

(iii)

∫

Y
ATE

11 (y)∇yw̄0
k(t,y) · ∇yv̄(y)dy

+

∫

Y

∫ t

0

{
BTE

11 (y) + CTE
11 (t − s,y)

}
∇yw̄0

k(s,y)ds · ∇yv̄(y)dy

= −
∫

Y
ATE

11 (y)ek · ∇yv̄(y) dy,

(36)

for all v̄ ∈ H1
per(Y ; R), k = 1, 2 and e1 = [1, 0]T , e2 = [0, 1]T . Since the initial conditions that we

have chosen are zero, we will not need to calculate the corrector w̄0
k. We will only need to solve for

w̄A
k and w̄k. Once we have solved for these corrector terms, we can then construct the homogenized
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matrices from



(i) (ATE
11 )k =

∫

Y
ATE

11 (y)
{
ek + ∇yw̄A

k (y)
}

dy,

(ii) (BTE
11 )k =

∫

Y
BTE

11 (y)
{
ek + ∇yw̄A

k (y)
}

dy,

(iii) (CTE
11 )k(t) =

∫

Y
CTE

11 (t,y)
{
ek + ∇yw̄A

k (y)
}

dy +

∫

Y
ATE

11 (y)∇yw̄k(t,y) dy

+

∫

Y

∫ t

0

{
BTE

11 (y) + CTE
11 (t − s,y)

}
∇yw̄k(s,y) ds dy,

(37)

where ek, k = 1, 2 are the basis vectors in R
2, (ATE

11 )k, (BTE
11 )k, and (CTE

11 )k are the kth columns of
the matrices ATE

11 ,BTE
11 , and CTE

11 , respectively, and the homogenized matrices are given by

ATE =

[
ATE

11 0

0 µ0

]
; BTE =

[
BTE

11 0

0 0

]
; CTE =

[
CTE

11 0

0 0

]
. (38)

The corresponding system of equations in the TE mode are



(i)
d

dt
LTEv = MTEv + JTE

s in (0, T ) × Ω,

(ii) v(0,x) = 0 in Ω,

(iii) v3nx1
− v1nx3

= 0 on (0, T ) × ∂Ω,

(39)

where v = (Ex1
, Hx2

, Ex3
)T , n = (nx1

, nx3
)T is the unit outward normal vector to ∂Ω, the operator

LTE is defined as

LTEu(t,x) = ATEu(t,x) + BTE

∫ t

0
u(s,x) ds +

∫ t

0
CTE(t − s)u(s,x) ds, (40)

and MTE is the two-dimensional curl operator



0 −∂x3
0

∂x3
0 −∂x1

0 ∂x1
0


 , (41)

and JTE
s (t) = −Jse1, e1 = [1, 0]T .

6 Models for Polarization

The constitutive law in (8) is sufficiently general to include models based on differential equations
and systems of differential equations or delay differential equations whose solutions can be ex-
pressed through fundamental solutions (in general variation-of-parameters representations)–see [2]
for details. A number of known polarization laws can be readily treated.

1. The choice of the kernel function

ν(t,x) =
ε0(εs(x) − ε∞(x))

τ(x)
e−t/τ(x), x ∈ X0 × ZD (42)
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in the dielectric X0 ×ZD (see Figure 2) corresponds to the differential equation of the Debye

Model for orientational or dipolar polarization given by

τPt + P = ε0(εs − ε∞)E, (43)

D(t,x) = ε0ε∞(t,x)E(t,x) + P(t,x). (44)

Here εs is the static relative permittivity. The presence of instantaneous polarization is ac-
counted for in this case by the coefficient ε∞ in the electric flux equation. That is, εr = ε∞
in X0 ×ZD, εr = 1 in air. The remainder of the electric polarization is seen to be a decaying
exponential with relaxation parameter τ , driven by the electric field, less the part included
in the instantaneous polarization. This model was first proposed by Debye [11] to model the
behaviour of materials that possess permanent dipole moments. The magnitude of the polar-
ization term P represents the degree of alignment of these individual moments. The choice of
coefficients in (43) gives a physical interpretation to εs and ε∞ as the relative permittivities of
the medium in the limit of the static field and very high frequencies, respectively. In the static
case, we have Pt = 0, so that P = ε0(εs − ε∞)E and D = εsε0E. For very high frequencies,
τPt dominates P so that P ≈ 0 and D = ε∞ε0E.

2. The general model also includes the Lorentz model for electronic polarization which, in dif-
ferential form, is represented with the second order equation:

Ptt +
1

τ
Pt + ω2

0P = ε0ω
2
pE, (45)

D = ε∞ε0E + P. (46)

In (45), ωp is called the plasma frequency and is defined to be

ωp = ω0

√
εs − ε∞, (47)

where ω0 is the resonance frequency. A simple variation of constants solution yields the
correct kernel function

ν(t) =
ε0ω

2
p

ν0
e−t/2τ sin (ν0t), (48)

ν0 =

√
ω2

0 − 1

4τ2
. (49)

3. For more complex dielectric materials, a simple Debye or Lorentz polarization model is often
not adequate to characterize the dispersive behaviour of the material. One can then turn
to combinations of Debye, Lorentz, or even more general nth order mechanisms as well as
Cole-Cole type (fractional order derivatives) models. We again refer the reader to [2, 10] for
details.
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7 Numerical Discretization for the Cell Problem

7.1 Spatial discretization via finite elements

We divide the reference cell Y into elementary rectangles, and consider Th to be a uniform mesh
with elements {K} of edge length h. We define the finite dimensional space

Vh = {vh | vh ∈ C0(Ȳ), vh|K ∈ Q1 for all K ∈ Th}, (50)

which approximates H1(Y). In (50), the space Q1 is defined as Q1 = P11, where, for k1, k2 ∈ N∪{0}

Pk1k2
= {p(x1, x2)|p(x1, x2) =

∑

0≤i≤k1

∑

0≤j≤k2

aijx
i
1x

j
2, aij ∈ R}. (51)

Thus, P11 is the space of the bilinear functions of two variables, and Vh is the space of continuous
piecewise bilinear functions. We now consider the subspace

Vper,h = {vh | vh ∈ Vh, vh(y1, 0) = vh(y1, 1) and vh(0, y2) = vh(1, y2) for all y1, y2 ∈ [0, 1]}, (52)

of Vh, where Y = [0, 1] × [0, 1].

Thus the spatially discrete problem is to find w̄A
k,h ∈ Vper,h, w̄k,h ∈ W 1,1(0, T ;Vper,h) and

w̄0
k,h ∈ W 2,1(0, T ;Vper,h), solutions to the corrector equations




(i) ε0

∫

Y
εr,h(y)∇h

y
w̄A

k,h · ∇h
y
v̄h(y) dy = −ε0

∫

Y
εr,h(y)ek · ∇h

y
v̄h(y) dy,

(ii) ε0

∫

Y
εr,h(y)∇h

y
w̄k,h(t,y) · ∇h

y
v̄h(y)dy

+

∫

Y

∫ t

0
{σh(y) + νh(t − s,y)}∇h

y
w̄k,h(s,y) · ∇h

y
v̄h(y) ds dy

= −
∫

Y
{σh(y) + νh(t,y)}

{
ek + ∇h

y
w̄A

k,h

}
· ∇h

y
v̄h(y) dy,

(iii) ε0

∫

Y
εr,h(y)∇h

y
w̄0

k,h(t,y) · ∇h
y
v̄h(y)dy

+

∫

Y

∫ t

0
{σh(y) + νh(t − s,y)}∇h

y
w̄0

k,h(s,y) · ∇h
y
v̄h(y) ds dy

= −ε0

∫

Y
εr,h(y)ek · ∇h

y
v̄h(y) dy,

(53)

for all v̄h ∈ Vper,h and k = 1, 2, and e1 = [1, 0]T , e2 = [0, 1]T , and ∇h
y

is a discrete approximation

to the gradient. In (53), we have used the definitions (32) of the matrices ATE
11 , BTE

11 and CTE
11 .

7.2 Time discretization via a recursive convolution approach

Since the susceptibility kernel ν(t,x), is exponential in nature for many materials of interest, we
can use recursion to compute the discretized time convolution of the susceptibility kernel with the
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electric field in the corrector subproblems, e.g., (53,ii) and (53,iii). A similar approach, known as
the recursive convolution (RC) method has been used to compute the discrete convolution terms
that appear in Maxwell’s equations [18, 15]. Let tn = n∆t, for some timestep ∆t and let Vn denote
the time component V(n∆t) for any vector field V. Thus, the equation (53,ii) can be discretized
in time as

ε0

∫

Y
εr,h(y)∇h

y
w̄n

k,h(y) · ∇h
y
v̄h(y)dy

+

∫

Y

∫ n∆t

0
{σh(y) + νh(n∆t − s,y)}∇h

y
w̄k,h(s,y) · ∇h

y
v̄h(y) ds dy

= −
∫

Y
{σh(y) + νh(n∆t,y)}

{
ek + ∇h

y
w̄A

k,h

}
· ∇h

y
v̄h(y) dy.

(54)

We will assume that all field components are constant over each time interval of length ∆t. Thus,
assuming that all field vectors are zero for t < 0 we have

ε0

∫

Y
εr,h(y)∇h

y
w̄n

k,h(y) · ∇h
y
v̄h(y)dy

+

∫

Y

n−1∑

m=0

∫ (m+1)∆t

m∆t
{σh(y) + νh(n∆t − s,y)}∇h

y
w̄m+1

k,h (y) · ∇h
y
v̄h(y) dsdy

= −
∫

Y
{σh(y) + νh(n∆t,y)}

{
ek + ∇h

y
w̄A

k,h

}
· ∇h

y
v̄h(y) dy.

(55)

Interchanging the space and time integral terms and rearranging we obtain

ε0

∫

Y
εr,h(y)∇h

y
w̄n

k,h(y) · ∇h
y
v̄h(y)dy

+
n−1∑

m=0

∫

Y

(∫ (m+1)∆t

m∆t
νh(n∆t − s,y) ds

)
∇h

y
w̄m+1

k,h (y) · ∇h
y
v̄h(y) dy

+
n−1∑

m=0

∫

Y
σh(y)∇h

y
w̄m+1

k,h (y) · ∇h
y
v̄h(y) dy

= −
∫

Y
{σh(y) + νh(n∆t,y)}

{
ek + ∇h

y
w̄A

k,h

}
· ∇h

y
v̄h(y) dy.

(56)

Let us define

νn
m(y) =

∫ (m+1)∆t

m∆t
νh(n∆t − s,y) ds. (57)

Using definition (57) in (56) we have

ε0

∫

Y
εr,h(y)∇h

y
w̄n

k,h(y) · ∇h
y
v̄h(y)dy +

n−1∑

m=0

∫

Y
νn

m∇h
y
w̄m+1

k,h (y) · ∇h
y
v̄h(y) dy

+
n−1∑

m=0

∆t

∫

Y
σh(y)∇h

y
w̄m+1

k,h (y) · ∇h
y
v̄h(y) dy

= −
∫

Y
{σh(y) + νh(n∆t,y)}

{
ek + ∇h

y
w̄A

k,h

}
· ∇h

y
v̄h(y) dy.

(58)
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Upon rearranging, we have

ε0

∫

Y

{
εr,h(y) + ∆t σh(y) + νn

n−1

}
∇h

y
w̄n

k,h(y) · ∇h
y
v̄h(y)dy

+
n−2∑

m=0

∫

Y
νn

m∇h
y
w̄m+1

k,h (y) · ∇h
y
v̄h(y) dy +

n−2∑

m=0

∆t

∫

Y
σh(y)∇h

y
w̄m+1

k,h (y) · ∇h
y
v̄h(y) dy

= −
∫

Y
{σh(y) + νh(n∆t,y)}

{
ek + ∇h

y
w̄A

k,h

}
· ∇h

y
v̄h(y) dy.

(59)

In equation (59) all the terms can be computed with the knowledge of just the solution at time
tn = n∆t, i.e., ∇h

y
w̄n

k,h, except the discrete convolution term involving νn
m for m = 0, . . . , n − 2.

We now show that the discrete convolution of all previous ∇h
y
w̄m

k,h field values and the discrete
susceptibility function can be reduced to recursive updating of a single vector on each element in
the finite element mesh, which involves a matrix vector multiplication at each time step.

7.3 Recursive convolution for Debye polarization

We consider the case of Debye polarization in the remainder of this paper. In this case the spatially
discrete susceptibility function is defined as

νh(t,y) =
ε0(εs,h(y) − ε∞,h(y))

τh(y)
e−t/τh(y), y ∈ Y, t > 0, (60)

and from (57) and (60) the function νn
m is defined as

νn
m(y) =

∫ (m+1)∆t

m∆t

ε0(εs,h(y) − ε∞,h(y))

τh(y)
e−(tn−s)/τh(y) ds, y ∈ Y. (61)

From (59) we define the summation

Ψn
K =

n−2∑

m=0

∫

K
νn

m∇h
y
w̄m+1

k,h (y) · ∇h
y
v̄h(y) dy, K ∈ Th, (62)

where νn
m is defined in (61). Equation (62) constitutes the time discrete convolution of the suscep-

tibility function νh and all field values of ∇yw̄m
k,h up to the nth time step.

Then for the n + 1 st step we find

Ψn+1
K =

n−1∑

m=0

∫

K
νn+1

m ∇h
y
w̄m+1

k,h (y) · ∇h
y
v̄h(y) dy

=
n−2∑

m=0

∫

K
νn+1

m ∇h
y
w̄m+1

k,h (y) · ∇h
y
v̄h(y) dy +

∫

K
νn+1

n−1∇h
y
w̄n

k,h(y) · ∇h
y
v̄h(y) dy.

(63)

From (61) we can derive the identity

νn+1
m (y) = νn

m(y)e−∆t/τh(y). (64)
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Using (64) in (63) we obtain

Ψn+1
K =

n−2∑

m=0

∫

K
νn

me−∆t/τh(y)∇h
y
w̄m+1

k,h (y) · ∇h
y
v̄h(y) dy

+

∫

K
νn+1

n−1∇h
y
w̄n

k,h(y) · ∇h
y
v̄h(y) dy.

(65)

In the spatial discretization of the reference cell Y , we will assume that the functions spatially
dependent τh(y), εs,h(y), ε∞,h(y), and σh(y) are constant on each element K of the finite element
mesh Th. With this assumption, for every element K ∈ Th, we have

Ψn+1
K = e−∆t/τh(K)

n−2∑

m=0

∫

K
νn

m∇h
y
w̄m+1

k,h (y) · ∇h
y
v̄h(y) dy

+

∫

K
νn+1

n−1∇h
y
w̄n

k,h(y) · ∇h
y
v̄h(y) dy.

(66)

Combining (66) and (62), we obtain the recursion

Ψn+1
K = e−∆t/τh(K)Ψn

K +

∫

K
νn+1

n−1∇h
y
w̄n

k,h(y) · ∇h
y
v̄h(y) dy, (67)

where νn+1
n−1(K), from the definition (61), can be calculated to be

νn+1
n−1(K) = ε0(εs,h(K) − ε∞,h(K))e(−2n∆t)/τh(K)(e∆t/τh(K) − 1). (68)

The finite element function Ψn
h which is defined to be Ψn

K on element K in the triangulation Th

can be calculated as

Ψn+1
h =

n−1∑

m=0

∫

Y
νn+1

m ∇h
y
w̄m+1

k,h (y) · ∇h
y
v̄h(y) dy,

=
∑

K∈Th

n−1∑

m=0

∫

K
νn+1

m ∇h
y
w̄m+1

k,h (y) · ∇h
y
v̄h(y) dy,

=
∑

K∈Th

(
e−∆t/τh(K)Ψn

K +

∫

K
νn+1

n−1∇h
y
w̄n

k,h(y) · ∇h
y
v̄h(y) dy

)
.

(69)

Thus we have the recursion

Ψn+1
h =

∑

K∈Th

e−∆t/τh(K)Ψn
K +

∫

Y
νn+1

n−1∇h
y
w̄n

k,h(y) · ∇h
y
v̄h(y) dy. (70)

We note that given the value Ψn
K for every element K ∈ Th at tn = n∆t, we can calculate Ψn+1

h by
equation (70) which only requires the knowledge of the solution vector w̄n

k,h at the nth step! The
solutions w̄m

k,h for m < n are not needed to be stored in memory for this calculation. We can treat
the discrete convolution in (53,iii) in the same manner as above.
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The calculation of the discrete homogenized matrix CTE
h also requires the computation of a

time integral which at time tn = n∆t requires the knowledge of the solutions w̄m
k,h at previous

times m∆t, m = 1, . . . n. Thus, we again try to obtain a recursive formula that will aid in the
computation of these time integrals. Once we have solved for the discrete corrector terms, we can
then construct the discrete homogenized matrices from



(i) (ATE
11,h)k =

∫

Y
ATE

11,h(y)
{
ek + ∇h

y
w̄A

k,h(y)
}

dy,

(ii) (BTE
11,h)k =

∫

Y
BTE

11,h(y)
{
ek + ∇h

y
w̄A

k,h(y)
}

dy,

(iii) (CTE
11,h)k(t) =

∫

Y
CTE

11,h(t,y)
{
ek + ∇h

y
w̄A

k,h(y)
}

dy +

∫

Y
ATE

11,h(y)∇h
y
w̄k,h(t,y) dy

+

∫

Y

∫ t

0

{
BTE

11,h(y) + CTE
11,h(t − s,y)

}
∇h

y
w̄k,h(s,y) ds dy,

(71)

where, as in (37), ek, k = 1, 2 are the basis vectors in R
2, (ATE

11,h)k, (BTE
11,h)k, and (CTE

11,h)k are

the kth columns of the discretized matrices ATE
11,h,BTE

11,h, and CTE
11,h, respectively, and the discrete

homogenized matrices are calculated as

ATE
h =

[
ATE

11,h 0

0 µ0

]
; BTE

h =

[
BTE

11,h 0

0 0

]
; CTE

h =

[
CTE

11,h 0

0 0

]
. (72)

Using the definitions of the discrete matrices we rewrite (71) as



(i) (ATE
11,h)k = ε0

∫

Y
ε∞,h(y)

{
ek + ∇h

y
w̄A

k,h(y)
}

dy,

(ii) (BTE
11,h)k =

∫

Y
σh(y)

{
ek + ∇h

y
w̄A

k,h(y)
}

dy,

(iii) (CTE
11,h)k(tn) =

∫

Y
νh(t,y)

{
ek + ∇h

y
w̄A

k,h(y)
}

dy + ε0

∫

Y
ε∞,h(y)∇h

y
w̄k,h(t,y) dy

+

∫

Y

∫ n∆t

0
{σh(y) + νh(n∆t − s,y)}∇h

y
w̄k,h(s,y) ds dy.

(73)

The term ∫

Y

∫ n∆t

0
νh(n∆t − s,y)∇h

y
w̄k,h(s,y) ds dy, (74)

in equation (73,iii) can be computed using a recursive formula that does not require knowledge of
the solutions w̄m

k,h at times m∆t, m = 1, . . . , n. To derive a recursive formula, which again need to
use properties of the susceptibility function νh. We define the term in (74) to be

Tn
h =

n−1∑

m=0

∫

Y
νn

m∇h
y
w̄m+1

k,h (s,y) dy. (75)

where νn
m is defined in (61). We then have

Tn+1
h =

n∑

m=0

∫

Y
νn+1

m ∇h
y
w̄m+1

k,h (s,y) dy

=
n−1∑

m=0

∫

Y
νn+1

m ∇h
y
w̄m+1

k,h (s,y) dy +

∫

Y
νn+1

n ∇h
y
w̄n+1

k,h (s,y) dy.

(76)



18

Using (64) in (76) we obtain the recursion

Tn+1
h =

n−1∑

m=0

∫

Y
e−∆t/τh(y)νn

m∇h
y
w̄m+1

k,h (s,y) dy +

∫

Y
νn+1

n ∇h
y
w̄n+1

k,h (s,y) dy

=
∑

K∈Th

e−∆t/τ(K)Tn
h (K) +

∫

Y
νn+1

n ∇h
y
w̄n+1

k,h (s,y) dy,

(77)

where

Tn
h (K) =

n−1∑

m=0

∫

K
νn

m∇h
y
w̄m+1

k,h (s,y) dy. (78)

8 Numerical Examples

In this section we present results of initial computations based on the above discretization schemes
that we have carried out for both circular and square microstructures. In these computations
we have used a conjugate gradient method to solve the resulting linear systems that arise after
discretizing our model in space and time.

8.1 Examples with varying relative permittivity

In the following examples we choose the value of the relative permittivity to be

εr(x) = ε∞(x) =

{
εi = 1.003, if x ∈ S,

εe = 2.7, if x ∈ Y/S̄,
(79)

where S is the microstructure that is enclosed inside the reference cell. These values are taken from
experimental measurements for air and polyurethane material which are the primary components
of the insulating foam described in the introduction.

8.1.1 Circular microstructures

We first consider the example of a composite material which possesses circular microstructures in
two-dimensions. We will solve a cell problem in the reference cell Y = [0, 1] × [0, 1], in which the
relative permittivity is given in equation (79) where S is the circular microstructure enclosed inside
the reference cell, as depicted in Figure 3. In this test case we will assume that εs = ε∞, σ = 0 and
τ = 3.16×10−8. Hence the parameters σ and τ are constant over the entire dielectric material. Since
ε∞ = εs, we have that ν(t) = 0 for all time t. Thus in this example, the model possesses instant
polarization but does not have a hysteretic term in the polarization. Our numerical simulation is
performed on a 51 × 51 nodes mesh grid. We define the inclusion volume fraction f as the ratio

f =
area of inclusion

area of domain Y
= area of inclusion. (80)



19

�
�

��
Yα Cell

α�-

uu
uu
u

uu
uu
u

uu
uu
u

uu
uu
u

uu
uu
u

&%
'$

Y

S

εe = 2.7

εi = 1.003

Length = 1
� -

Figure 3: (left) Periodic composite material presenting a circular mi-
crostructure with periodicity α. (right) The reference cell Y = [0, 1] ×
[0, 1].

For f = 0.5 the homogenized matrix ATE
11 is

ATE
11 = ε0

[
1.68009 −2.92 × 10−4

−2.92 × 10−4 1.68009

]
, (81)

and the homogenized matrices BTE
11 and CTE

11 are the zero matrices.

In the numerical solution for the homogenized model we have approximated the circular mi-
crostructure in a staircase fashion. In Table 1 we present the homogenized relative permittivities
for different inclusion volume fractions f , and different refinements of the mesh grid that is imposed
on the reference cell Y . Here h denotes the mesh step size. In this table we note that the lower
and upper off-diagonal entries, (ATE

11 )lod, and (ATE
11 )uod, respectively, of the homogenized matrix

ATE
11 decrease at least as fast as O(h) as the mesh grid is refined. The error in the off-diagonal

terms is probably due to the inaccurate representation of the circular microstructure by a staircase
approximation. Hence ATE

11 is approximately diagonal with identical diagonal entries. For the case
of f = 0.5 we have

ATE
11 ≈ 1.68 ε0

[
1.0 0

0 1.0

]
. (82)

Thus the homogenized or effective relative permittivity for f = 0.5 is εr = 1.68.

In Figure 4 we plot the relative effective permittivity versus the inclusion volume fraction for
the method discussed in this paper and compare it to different theoretical mixture models, namely
the Maxwell-Garnett formula, the Bruggeman mixture rule, as well as the weighted average of the
different relative permittivities. (We refer the reader to [22] for a discussion of the various theoretical
mixing formulas.) We note how close our predicted values of the effective relative permittivity are
to those predicted by these mixing rules. The prediction of the effective relative permittivity of the
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f fsc h (ATE
11 )d (ATE

11 )lod (ATE
11 )uod

0.7854 0.78 0.02 1.23068 5.92955 × 10−3 5.92955 × 10−3

0.78 0.01 1.23186 1.86948 × 10−3 1.86948 × 10−3

0.785 0.005 1.23347 1.16484 × 10−3 1.16484 × 10−3

0.785 0.0025 1.23767 5.41779 × 10−4 5.41779 × 10−4

0.5027 0.502 0.02 1.68009 −2.92023 × 10−4 −2.92023 × 10−4

0.502 0.01 1.68299 −7.31937 × 10−5 −7.31937 × 10−5

0.502 0.005 1.68509 −1.94965 × 10−5 −1.94965 × 10−5

0.502 0.0025 1.68523 −5.02621 × 10−6 −5.02621 × 10−6

0.7124 0.7124 0.02 1.34434 −8.69546 × 10−19 −2.42287 × 10−17

0.7129 0.01 1.34789 −3.21656 × 10−18 −1.73589 × 10−17

0.7124 0.005 1.35081 2.19197 × 10−16 5.59808 × 10−16

0.7125 0.0025 1.35216 −1.96101 × 10−18 5.536 × 10−16

0.1257 0.1252 0.02 2.40606 −6.64092 × 10−4 −6.64092 × 10−4

0.1253 0.01 2.40637 −1.72749 × 10−4 −1.72749 × 10−4

0.1255 0.005 2.40609 −4.39996 × 10−5 −4.39996 × 10−5

0.1255 0.0025 2.40626 −1.15057 × 10−5 −1.15057 × 10−5

Table 1: The effective relative permittivities for different volume frac-
tions with a circular microstructure. The table lists the diagonal entries,
(ATE

11 )d, of the homogenized matrix ATE
11 as well as the lower and upper

off-diagonal entries (ATE
11 )lod and (ATE

11 )uod, respectively, for different
levels of refinement of the mesh grid on the reference cell Y . Here f is
the volume fraction and fsc is the computed volume fraction using the
staircase approximation.
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Figure 4: Effective relative permittivity distribution for random mixtures with
circular microstructures.

composite mixture εeff according to these formulas is given by

εeff = εe + 2fεe
εi − εe

εi + εe − f(εi − εe)
(Maxwell-Garnett), (83)

(1 − f)
εe − εeff

εe + εeff
+ f

εi − εeff

εi + εeff
= 0 (Bruggeman). (84)

These formulas hold for randomly distributed circular inclusions of permittivity εi in a homogeneous
environment of permittivity εe. The inclusions occupy a volume fraction f of the homogeneous
medium. These different mixing models predict different effective permittivity values for a given
mixture. There are also bounds that limit the range of the predictions. These bounds are the
Weiner bounds given by

εeff,max = fεi + (1 − f)εe (weighted average), (85)

εeff,min =
εiεe

fεe + (1 − f)εi
. (86)

These bounds hold for all values of εi and εe. Other mixing models such as power-law models, the
Lichtenecker formula, etc., also exist in the literature. We again refer the reader to [23, 22] for
further details. In Figure 5 we plot the solution vectors w̄A

1 and w̄A
2 , for f = 0.5, over the reference

cell Y . In Figure 6 we plot a topview of the corresponding solution vectors in the domain Y .
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Figure 5: Plot of the solution vectors w̄A
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2 (bottom) for an inclu-
sion fraction volume f = 0.5 on a 50 × 50 cells mesh grid. The homogenized
value of εr for this case is ≈ 1.68
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8.1.2 Square microstructures

We next replaced the circular microstructures in two-dimensions with square microstructures and
repeated the experiment performed in Section 8.1.1. We solved a cell problem in the reference cell
Y = [0, 1] × [0, 1] in which the value of the relative permittivity is given in (79) where S is now
a square microstructure that is enclosed inside the reference cell. In this test case, as before, we
will assume that εs = ε∞, σ = 0 and τ = 3.16 × 10−8. Thus, the parameters σ and τ are constant
over the entire dielectric material. Since ε∞ = εs, we again have that ν(t) = 0 for all time t. Our

�
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S

εe = 2.7

εi = 1.003

Length = 1
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Figure 7: (left) Periodic composite material presenting a square mi-
crostructure with periodicity α. (right) The reference cell Y = [0, 1] ×
[0, 1].

numerical simulation is performed on a 51 × 51 nodes mesh grid. For f = 0.52 the homogenized
matrix ATE

11 is

ATE
11 = ε0

[
1.65057 −3.04533 × 10−18

−1.8576 × 10−18 1.65057

]
, (87)

and the homogenized matrices BTE
11 and CTE

11 are the zero matrices. In this case the sides of the
square are aligned with the mesh grid on the reference cell Y , so we do not have the staircase error
that was observed in the case of circular microstructures. Again ATE

11 is approximately diagonal
with identical diagonal entries. For the case of f = 0.52 we have

ATE
11 ≈ 1.65 ε0

[
1.0 0

0 1.0

]
. (88)

Thus the homogenized or effective relative permittivity for f = 0.52 is εr = 1.65. In Figure 8 we plot
the effective relative permittivity for different volume fractions and compare these values to those
obtained for circular microstructures. We note here how close the effective relative permittivity
values are for circular and square microstructures of the same volume fraction. In Figure 9 we plot
the solution vectors w̄A

1 and w̄A
2 , for f = 0.52, over the reference cell Y . In Figure 10 we plot a

topview of the corresponding solution vectors in the domain Y .
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8.2 Example with varying relaxation times

8.2.1 Circular microstructures

We now consider an example of a composite material which possesses circular microstructures in
which the value of the relaxation time τ is given to be

τ(x) =

{
τi = 1.58 × 10−8, if x ∈ S,

τe = 3.16 × 10−8, if x ∈ Y/S̄.
(89)

In this test case, we will assume that the other parameters namely, εs, σ and ε∞ are constant over
the entire dielectric material with ε∞ = 5.5, εs = 78.2 and σ = 1.0 × 10−5.

In Figure 11 we plot the results of the cell problem. This figure plots the effective dielectric
response function (DRF) as a function of time. We compare the homogenized DRF with four
different cases. The low frequency case corresponds to one in which the relaxation time τ is given
to be the weighted average of τi and τe

τlow = fτi + (1 − f)τe. (90)
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Figure 8: Comparison of the effective relative permittivity distribution for
square and circular microstructures
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The high frequency case corresponds to the relaxation time

τhigh =

(
f

τi
+

1 − f

τe

)−1

. (91)

The low and high frequency averages for the relaxation time τ were observed in numerical experi-
ments that were performed in [3], in which a probabilistic approach is taken to an electromagnetic
interrogation problem of a dielectric medium that is a mixture of two Debye media with different
relaxation times τ . The low frequency average corresponds to the average relaxation time that
is observed when the composite media is interrogated by electromagnetic pulses at frequencies of
106 Hz, whereas the high frequency average was observed at higher frequencies of 109 − 1011 Hz
(frequencies are considered low here if the corresponding angular frequency ω < 1/τ). In Figure 11
we also compare the homogenized DRF to the weighted average of the corresponding DRF’s, i.e.,

νwa(t) = fνi + (1 − f)νe, (92)

where

(i) νi(t) =
ε0(εs − ε∞)

τi
e−t/τi ,

(ii) νe(t) =
ε0(εs − ε∞)

τe
e−t/τe ,

(93)

as well as to another average that we call the inverse weighted average, which is the inverse of the
weighted averages of the inverses of the two DRF’s, i.e.,

νIwa(t) =

(
f

νi
+

(1 − f)

νe

)−1

, (94)

where νi and νe are defined in (93,ii), and (93,iii), respectively. Clearly Figure 11 demonstrates
good agreement between the homogenized DRF and the other approximations. Finally in Figure
12 we plot the homogenized DRF as a function of the inclusion volume fraction at times t = 0.556
ns and t = 27.78 ns. For t << min(τi, τe) one can show that νIwa(t) ≈ ν(t; τlow) as is clearly seen
in the top plot of this figure. Similarly we have νwa(t) ≈ ν(t; τhigh). We observe that for all values
of f the plot of the homogenized DRF lies between the other approximations for both small and
large times.

8.2.2 Square microstructures

We next repeated the above numerical calculation for square microstructures in which the value of
the relaxation time τ is given to be

τ(x) =

{
τi = 1.58 × 10−8, if x ∈ S,

τe = 3.16 × 10−8, if x ∈ Y/S̄.
(95)

As before we have assumed that the other parameters namely, εs, σ and ε∞ are constant over the
entire dielectric material with ε∞ = 5.5, εs = 78.2 and σ = 1.0 × 10−5. In Figure 13 we plot the
homogenized DRF as a function of the inclusion volume fraction at time t = 0.556 ns (top) and
time t = 27.78 ns (bottom). In Figure 14 we plot the homogenized DRF as a function of time, for
f = 0.52. In both Figures 13 and 14 we observe that the difference between the values of the DRF
for square versus circular microstructures is of the order of 10−4 − 10−5.
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Figure 14: (top) The effective dielectric response function (DRF) ν(t) as a
function of the inclusion volume fraction f for t = 0.556 ns and (bottom)
t = 27.78 ns. The difference between the values of the DRF for the square
and the circular microstructures are on the order of 10−4 − 10−5.
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9 Conclusions and Future Directions

Taking into account the large deformations of the corrector functions (see Figures 5, 6, 9, and
10) we can expect that the correction of the electric and magnetic fields as given by (20) will be
of crucial interest. The results of the cell problem with circular microstructures for calculating
effective relative permittivities agree well with the mixing formulae results that are available in the
literature. However, there are several advantages to taking a homogenization approach to obtain
effective dielectric parameters. First, mixing formulae are not available for general microstructure
geometries. Close examination of the materials of long term interest to us reveal that the foam
consists of hexagonal-like cells in a microstructure configuration that is 95% gas surrounded by
a matrix of polyurethane which has an estimated relative permittivity of 2.7. A homogenization
approach will permit us to ascertain the sensitivity of the effective permittivities with respect to the
micro-geometry. While we have used a staircase method to approximate the circular microstructure
in the cell problem, the approach also permits better approximations (e.g., a fictitious domain
approach) for the circular (and other shape) microstructures in the cell problem.

A second advantage of a homogenization approach is the flexibility it affords in assumptions
about material polarization laws. Here in proof-of-concept calculations we have used a Debye
medium for polarization but could with equal ease investigate the cases of Lorentz media, compos-
ite laws, and other higher order dispersive media. Moreover, as we investigate other mechanisms,
it may be computationally advantageous to treat directly the polarization law as a side constraint.
That is, the hysteretic term of the polarization is most generally represented by an integral term
which involves a dielectric response function. Our numerical approximation to this approach in-
volved a recursive convolution method to approximate the integral term. Our current efforts entail
an approach in which the homogenized model involves an ordinary differential equation for the
hysteretic part of the polarization term. This approach should facilitate numerical approximation
of the solution of the electromagnetic interrogation problem for a wide class of assumed polarization
mechanisms.

The initial results of the cell problems for the calculation of the dielectric response function
compare well with the results that were obtained in [3], where a probabilistic approach is taken to
an electromagnetic interrogation problem in a dielectric medium that is a mixture of two Debye
media with different relaxation times. Each approach has its own conceptual, theoretical and
computational advantages that merit further comparisons.
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97–102, 2004.

[6] A. Bossavit, G. Griso, and B. Miara, Modelling of periodic electromagnetic structures bian-
isotropic material with memory effects, J. Mathématiques Pures et Appliqu’ees, to appear.

[7] D. Cioranescu, Homogenization and applications to material sciences in Research Directions

in Distributed Parameter Systems, Frontiers in Applied Mathematics, v. FR27, 55–94, SIAM,
Philadelphia, PA, 2003.

[8] D. Cioranescu, A. Damlamian, and G. Griso, Periodic unfolding and homogenization, C. R.
Acad. Sci. Paris, Ser. I, 335:99–104, 2002.

[9] D. Cioranescu and P. Donato, An Introduction to Homogenization, Number 17 in Oxford
Lecture Series in Mathematics and its Applications. Oxford University Press, 1999.

[10] K. S. Cole and R. H. Cole, Dispersion and absorption in dielectrics, J. Chem. Phy., 9:341–351,
1941.

[11] P. Debye, Polar Molecules, Chemical Catalog Co., New York, 1929.
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